PHYSICAL REVIEW E

VOLUME 51, NUMBER 1

JANUARY 1995

Deformation of an elastic triangle in equilibrium under gravity

A. H. Opie
The School of Mathematics, The University of New South Wales, Kensington, New South Wales 2033, Australia

J. Grindlay
Guelph-Waterloo Programme for Graduate Work in Physics, Waterloo Campus, University of Waterloo,
Waterloo, Ontario, Canada N2L 3G1
(Received 7 March 1994)

The equilibrium state of a triangular pile of particles interconnected by linear springs and subjected to
the force of gravity is investigated numerically. The three strain components describing the deformation
of the pile, the density change, and the supporting stress field are calculated. The results (a) exhibit an
unexpected richness in behavior and (b) show evidence of a thermodynamic limit in small ( ~ 100 layers)

piles.

PACS number(s): 46.10.+z, 01.55.+b

I. INTRODUCTION

The theoretical analysis of the equilibrium contact
force distributions in piles of rigid disks and blocks [1-6]
has been stimulated by the difficulty in interpreting the
experimental results obtained from measurements on
piles of sand and fertilizer [7]. In the simplest case, one
attempts to calculate the forces acting in a triangular pile
of smooth, rigid disks in equilibrium under gravity. Two
unexpected results emerged from this algebraic analysis
[5,6]. First of all, the force distribution (the set of all
disk-disk forces) in a given geometrical distribution is not
unique but depends on the way in which the pile is con-
structed. Second in the case of a symmetrically built pile,
the maximum shearing force occurs not at the base under
the apex, where one might have expected, but rather at
the bottom two corners. In contrast, in the practical
cases of piles of sand and fertilizer, the maximum shear
stress occurs on the base roughly halfway between the
center and the perimeter [7].

Given the unexpected force distributions seen both
theoretically and experimentally in a rigid pile, we decid-
ed to explore the case of an elastic pile of particles, in
equilibrium under gravity. We had two aims, one to cal-
culate the deformation distribution within the pile and
two to check for the existence of a thermodynamic limit
[8] for the pile. If a model possesses a thermodynamic
limit, then certain properties of the model are indepen-
dent of the size of the system, provided the number of
particles making up the model is sufficiently large. The
elastic pile model described below is not homogeneous in
the deformed state and so the standard thermodynamic
limit proofs [8] do not apply. Similar remarks hold for
the pile of rigid disks. (The contact force distribution is
not homogeneous and the contact forces are not conser-
vative.) As we shall describe below, a thermodynamic
limit does exist for the elastic pile and evidence for this
appears in small ( ~ 100 rows) piles.

Our model consists of a triangular pile of point parti-
cles interconnected by linear springs and subjected to
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gravity. The problem is to determine the shifts in equilib-
rium positions caused by the gravitational forces. Once
we have these shifts, we can determine the gravity in-
duced deformation of the triangle. A general algebraic
solution for the equilibrium problem in an arbitrary large
triangle proved to be elusive and so we carried out the
numerical analysis, which we report below. As in the rig-
id disk case, the results were unexpected. The pattern of
deformations, described by three strain tensor com-
ponents, turns out to depend critically on the relative
strengths of the springs used to link particles within rows
and between rows in the triangle. These patterns are not
at all what one would expect a priori. Our model pro-
vides another example of what appears to be a simple sys-
tem exhibiting surprisingly complex behavior.

The triangular model and the equilibrium conditions
are described in Sec. II. In Sec. III we reduce the prob-
lem to dimensionless form in preparation for computing.
We also introduce a microscopically defined strain tensor
and its dimensionless form. Sections IV-VIII contain
descriptions of the numerical results for the three strain
components, the mass density change, and the reaction
forces supporting the weight of the triangle. Section IX
contains a brief summary and the Appendix includes the
definition of a microscopic strain tensor.

II. MODEL

Consider a regular, triangular array of particles of
mass m connected by linear, unstretched springs as
shown in Fig. 1. The springs connecting particles in adja-
cent rows have spring constant A and unstretched length
a; the corresponding parameters for the springs within
rows are A’ and a’. Thus, the inner angle
O=arcos(a’/2a), see Fig. 1. The N rows are labeled
from the vertex down by n =1,2, ..., N; within each row
the particles are labeled from the left s=1,2,...,n, see
Fig. 1. Within the array the (n,s)th particle is surround-
ed by six nearest neighbors, Fig. 2, and interacts via
springs only with these particles. We introduce a set of
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Cartesian axes with the origin at the apex; the Ox, axis is
parallel to the rows and the Ox, is pointing away from

the array, see Fig. 1. The position coordinates of the 111
(n,s)th particle are then
x,(n,s)=acosb(2s—n—1), 2
. (1) 3
x,(n,s)=asinf(1—n) .
This two-dimensional array of particles, connected by un- 4
stretched springs, is in static equilibrium. Now let us 5
suppose that (a) gravity is switched on and acts in the
negative Ox, direction and (b) the bottom layer of parti- 6
cles n =N is supported to prevent any vertical motion. s
The new equilibrium position of the (n,s)th particle is
denoted x(n,s)+wu(n,s). The shifts or displacements
u(n,s) are solutions to the particle equilibrium condi- FIG. 1. Triangular array of particles and springs in equilibri-
tions, containing both spring and gravitational forces. um in the absence of gravity. The rows are labeled
It is a simple exercise to write down these equilibrium n=1,2,...,N and within the rows the particles are labeled
conditions; for the (n,s)th particle they are, in the Ox, s=1,2,...,n. The bottom row, n =N is in contact with a solid,

direction, smooth line.

0=4A"cos?0[u(n,s +1)—2u(n,s)+u,(n,s —1)]
+AcosOf[u;(n—1,s)+u;(n—1,s —1)+tu(n+1,s)+tu(n+1,s+1)—4u,(n,s)]cosd
Fluyn—1,8)—uy(n—1,s—1)+u(n+1,s)—u,(n+1,s +1)]sinb} (2)
and in the Ox, direction,
0=Asinff{[u;(n—1,s)—u;(n—1,s—1)+u,(n+1,s)—u,;(n+1,5+1)]cos6
Flu,(n—1,8)+u,(n—1,s—1)tu,(n+1,s)tu(n+1,s+1)—4u,(n,s)]sinf} —w . (3)
w =mg is the weight of an individual particle. The equivalent expressions for particles on the left edge are
0=4A"cos’0[u(n,2)—u,(n,1)]
+AcosOf[u;(n—1,1)+u(n+1,1)+tu,(n+1,2)—3u,(n,1)]cosd

Fluy(n—1,1)+u,(n+1,1)—uy(n+1,2)—u,(n,1)]sin6} 4)
and
0=Asinf{[u,;(n—1,1)+u;(n+1,1)—u(n+1,2)—u,(n,1)]cosd
+luy(n—1,1)+uy(n+1,1)+u,(n+1,2)—3u,(n,1)]sin6} —w . (5)

Analogous results hold on the right edge. The horizontal supporting line prevents any vertical shifts by the particles in
the bottom layer, i.e.,

u,(N,s)=0, s=12,...,N. 6)
The equilibrium conditions in this bottom row then take the form

0=4A’ cos20[u1(N,s+1)——2u1(N,s)+u1(N,s—1)]

+AcosO{[u;(N—1,s)+u (N—1,s—1)—2u;(N,s)]cos@+[u,(N—1,s)—u,(N—1,5s —1)]sin6} (7
|

and is smooth so that no horizontal clamping or frictional

o 0 force appears in (7).
0=Asin0{[u;(N—1,s)—u;(N—1s—1)]cos In a pyramid of N rows there are N(N +1)/2 particles
+[uy(N—1,s)+uy(N—1,5 —1)]sin6} and so N(N+1) equilibrium conditions. The corre-
—w—+R(s) (8) sponding N(N +1) unknowns are the N(N+1)/2 com-
w ’ ponents u,(n,s), n=12,...,N, s=12,...,n; the

where R (s) is the normal, reaction force acting on the sth N(N—1)/2 components u,(n,s), n=1,2,...,N—1,
particle in this row. We assume that the supporting line s=1,2,...,n; and the N forces R(s), s=1,2,...,N.
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(n-1,s-1) (n-1,s)
(n,s)
(n,s-1) %n,sﬂ)
(n+l,s) (n+l,s+1)

FIG. 2. Labeling of the six nearest neighbors of the (n,s)th
interior particle.

Once we have obtained a solution to the equilibrium con-
ditions, we can then determine the variation of strain
through the pile. We have chosen to use the following
microscopically derived strain tensor €;; (see Appendix):

€ =[u(n,s+1)—u(n,s)]/2a cosb , 9)

€,=[2u,(n—1,s)—u,(n,s)—u,(n,s +1)]/2a sinf ,
(10)
ep={2u(n—1,s)—u(n,s)—u,(n,s +1)+tanb
X{uy(n,s+1)—u,(n,s)]} /4a sinb . (11

The fractional change in mass density is (mass per unit
area) Ap/p=—(€;;+€5). With the choice of normal

J

O=yl#,(n,s+1)—2u(n,s)+a,(n,s—1)]

strains given in (9) and (10), we find

Ap/p=— {2u,(n—1,s)—u,(n,s)

2a sinf
—u,(n,s+1)+tanf

X[u(n—1,s)—u(n,s)]} . (12)

III. NUMERICAL SOLUTIONS

We shall now describe the results of a numerical
analysis of the equilibrium states of the triangle described
above. The first step is to choose dimensionless variables.
The position coordinates x; and displacements u; are
scaled in the following manner:

Xi(n,s)=x(n,s)/[Na cosf], (13)
X,(n,s)=x,(n,s)/[Na sinf] , (14)
ﬁl(n,s)zul(n,s)% sinf cosf , (15)
ﬁz(n,s)=u2(n,s)% sin%6 . (16)

In these dimensionless coordinates [Egs. (13) and (14)] the
peak of the triangle is at (0,0) and the two lower corners
are at (+1,—1). The (n,s)th equilibrium conditions for
these new displacements [Eqgs. (15) and (16)] take the
simple one-parameter form

+{a,(n—1,s)+a(n—1,s—1)+a(n+1,s)+a,(n+1,s+1)—4u(n,s)]

iy n—1,8)—@y(n—1,s — 1)+ Ty (n+1,5)—,(n +1,s+1)], (17)

o=[a,(n—1,s)—a(n—1,s—1D)+a(n+1,s)—u,(n+1,s+1)]

+{a,(n—1,5)+a,(n—1,s —1)+a,(n+1,s)+a,(n+1,s +1)—4u,(n,s)]—1, (18)

where

y=4A"/\ .

For the special case of identical springs, A’=A, y =4, and 6==/3.

Along the left edge,

0=y[a,(n,2)—a,(n,D]+[@(n—1,1)+a,(n +1,1)+7,(n +1,2)—37,(n,1)
+a@,(n —1,1)+a,(n +1,1)—a,(n +1,2)—,(n,1)], (20)

and

O=#(n—1,)+a;(n+1,1)—a(n+1,2)—u,(n,1)
+ia,(n —1,1)+#,(n+1,1)

+iu,(n +1,2)—3u,(n,1)—1. (21)

Since the triangle-support contact is assumed to be

smooth, the equilibrium conditions in the bottom row
yield an equation for the displacements

[
0=y[a#(N,s +1)—2a,(N,s)+a,(N,s —1)]

+[a(n—1,s)+a(N—1,5s —1)—2,(N,s)
+u,(N —1,5)—,(N—1,s —1)] (22)
and an equation for the normal reactions
R(s)=w[l—a;(N—1,s)+a(N—1,5s—1)
+u,(N—1,s)+a,(N—1,s —1)] . (23)

We note that the shifts #,(n,s), #,(n,s), and the ratio
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R (s)/w are functions of two parameters, namely N and y
and are independent of the angle 6.

Substituting for the displacements in terms of the tilde
quantities in the expressions for the strains (9), (10), and
(11), and fractional change in mass density (12) we find
that

_ | mg 1

€= |0 ——— |€yy (24)
1 | 2Ma sinfcos?@ |
€)= mg ‘—1—— € (25)
2 | 4)ra cosfsin®0 | 1’
= | 1_1I¢ 26)
2 2a sinde |27

_ | .mg

= |- A , 2
Ao /o 2ha sin’o ag/o (27)

where the tilde quantities are
eula(n,s+1)—u,(n,s)], (28)
en=I[#,(n,s +1)—u@,(n,s)+2u,(n,s —1)
—u(n,s)—u(n,s +1)], (29)
€, =[2u,(n,s —1)—t,(n,s)—t,(n,s +1)], (30)
and
Ao /o= —[%&,,+tan’0¢,;] . 31)

Each of the new scaled strains, (28), (29), and (30), is ex-
pressible in terms of the tilde displacements alone and
hence are functions only of the model parameter N and
v. In contrast, the scale mass density change, (31), is a
function of N, v, and the inner angle 6.

A FORTRAN program was written to seek solutions
iteratively to the equilibrium conditions for given values
of N and the parameter y. We use the Gauss-Seidel
over-relaxation method with relaxation parameter equal
to 1.85 [9]. In this method, one guesses at the solution to
the equilibrium conditions and the algorithm then homes
into the correct solution. This method works only if the
system is locally stable. In all the various solutions we
sought for different model parameters, we saw no evi-
dence of instability, even when we tried initial guesses,
which were not symmetric about the vertical axis
through the apex of the triangle.

Consider first the scaled strain €, (28). We ran our
program to determine the function, &,,(X,%,), for fixed
v and a variety of N values. This normal strain field
changed appreciably with increasing N —as one might
expect in a pile of increasing size. However, the normal-
ized strain field €,(%,,%,)/€|"", where & is the max-
imum of |&,,(X,,%,)|, proved to be much less sensitive to
changes in N and indeed tended to a limit independent of
N as the pile size was increased. For example, in the case
of y =4, as N was increased from N =280 to N =100 the
field &,,(X,%,) /€ changed by less than 1%. Similar
results were found for other y values. Note that
€1(x,%,) /e *=%,(%,,%X,) /€], (24), and so the same

conclusions hold for the strain field, €,;(X;,X,). The oth-
er strains, (29) and (30), and the mass density change,
(31), exhibited a similar pattern of behavior.

These results show that (a) a thermodynamic limit ex-
ists for the strain and mass density change fields scaled to
their maxima and regarded as functions of the position
coordinates scaled to the dimensions of the triangle and
(b) the system approaches to within 1% of this limit for
N ~100.

We note that the displacement component u, and the
normal strains €;; and €,, are even functions under
reflection in the vertical axis of the triangle, x; — —x; in
contrast u, and the shear strain €, are odd functions un-
der reflection.

IV. NORMAL STRAIN €,

Figure 3(a) contains a contour plot of &/ for
Y =4, where €, is the scaled normal strain [Eq. (28)] and
e is the maximum value of €, occurring within the tri-
angle. The vertical and horizontal axes represent the
scaled coordinates X, and X, [Egs. (13) and (14)]. Be-
cause of the symmetry properties of the strains under
reflection in the vertical axis, we show only the contours
on the right side of the triangle. As noted above, €;; and
" are scaled by the same quantity [Eq. (24)] and so the
contour plot also describes the ratio €, /{1

The strain €;, displays both positive and negative
values within the triangle; it is positive for X, < —0.25
and X, > —0.0S, and negative in the intervening region,
see hatched area in Fig. 3(a). The largest magnitude
€, =€ occurs at the base vertically below the apex; in
the tilde coordinate system, this is the point (0, —1). The
smallest negative strain is —0.0071€7}** and this occurs at
(0,—0.2). Within the two positive strain regions, the
horizontal displacement components #,(n,s) are all posi-
tive in the right half of the triangle, i.e., the equilibrium
positions move horizontally away from the vertical axis
of the triangle; within the negative strain regions, the
horizontal displacement components are negative, (dis-
placements towards the vertical axis). However in the
boundary region X, ~ —0.25 we find examples of parti-
cles with negative strains €;; <0, and positive displace-
ments u(n,s)>0.

For large values of y, the negative strain region disap-
pears and €, drops off more rapidly from the maximum
at the base.

As the ratio y is reduced from the value 4, the
minimum strain at the peak decreases and other two re-
gions of negative strain develop at the lower corners. For
the case shown in Fig. 3(b), ¥ =0.4, the minimum near
the peak is €;;= —0.112€P* at (0, —0.14). The minima
at the lower corners have the value €;; = —0.038€(}** and
occur at (+0.96, —1).

V. NORMAL STRAIN ¢,,

For values of ¥ =4.0 and above, the normal strain €,,
is negative everywhere in the triangle with a maximum
magnitude €33* occurring at the center of the base, coor-
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FIG. 3. Contour plot of the normal strain €;; normalized to
the maximum value €* for the two cases (a) y=4 and (b)
v =0.4. The position of points within the triangle are shown us-
ing the normalized coordinates X, and X, [Egs. (13) and (14)].
The negative strain regions are shown crossed hatched. The
data in these and the following seven contour plots were ob-
tained for a pile with 100 rows.

dinates (0, —1). Figure 4(a) contains the contour maps of
€,, /€53 for the value y =4. For smaller spring constant
ratios, regions of positive strain appear at the peak and
lower two corners: see the hatched regions in Fig. 4(b)
for the case ¥y =0.4. There are three positive maxima;
one near the peak (0, —0.14) with €,,=0.034€};*, and
the two near the lower corners (£0.94,—0.97) with

€2, =0.040€3".

coso | (@)
-0.1 o
L0 N
en/ ea
-0.20
=0.30 -02 Y =4
-0.40 -
—
~ -03
X s | \
-0.60 |- N
—\ %
-0.70 [ ~os
-
=080 = OJ\
-0.90 N o o
1233 23 3
~1.00 L 1 \ 1 \ 1\
“o.01 0.21 0.41 0.61 0.81
~
X,
00
-0.10 B (b)
0015
max:
-0.20
822/ 829
-0
-030 Y =04
-0.40 |
 ———
-0
~
—050 }
X
—
-0.60 |- \\ \‘?a
%
-0.70 T,
00
-0.80 |
0015
T 1 0.03
-0.90 I ~ o k3 ° °
Q9 . 3 23
) } AN N WA
0.01 021 0.41 ~ 061 0.81
X

FIG. 4. Contour plot of the normal strain €,, normalized to
the maximum magnitude €35 for the two cases (a) ¥y =4 and (b)
v=0.4.

VI. SHEAR STRAIN ¢,,

Since the shear strain is an odd function under
reflection in the vertical axis, X; =0 is a line of vanishing
strain, €,,=0. For values of ¥ =4 and above, the shear
strain €,, is positive (negative) everywhere to the right
(left) of the vertical axis. The case of ¥y =4 is shown in
Fig. 5(a). From this figure, we see that |€;,| reaches a
maximum magnitude on the sloping boundary at the
points (£0.54, —0.54).

As y is reduced in from the value 4, the shear strain
exhibits both positive and negative values in both halves.
The case of ¥ =0.4 is shown in Fig. 5(b). In the right half
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FIG. 5. Contour plot of the shear strain €;, normalized to the
maximum value €/5* for the two cases (a) y =4 and (b) y =0.4.

of the triangle there is a maximum €e{3* at (0.33,—0.33)

on the boundary and two minima, one €, = —0.35€{5* at
(0.91,—0.91) and the other €,,=—0.012¢[¥* at

(0.22, —0.80).

VII. FRACTIONAL DENSITY CHANGE Ap /p

The density change Ap/p is a linear combination of &,
and €,, [Egs. (27) and (31)]. For a given triangle and
hence given angle 6, lines of vanishing density change
occur at points for which

?ll/’g22= - cot29 . (32)

In Fig. 6 we show contour plots of the ratio &,,/¢,, for
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FIG. 6. Contour plot of the ratio of normalized strains
%,,/%,, for the case ¥y =4. The hatched areas are regions of posi-
tive values.

y=4. Since €,, is negative everywhere, see Sec. III
above, the ratio €,,/&,, is negative only where €, is posi-
tive, i.e., in a small region at the peak and below approxi-
mately the line X, = —0.25, see Sec. III above. The max-
imum magnitude of €,,/€,, occurs at (0,—0.82) and has a
value 0.141. Thus, for the case y=4, the fractional
change Ap/p will vanish (and hence change sign) for tri-
angles with 6> arctan[V'1/0.141]=20.6°. As an exam-
ple we have constructed the graph of the contours of the
fractional density charge for ¥ =4 and 6=arctan(10/3),
Fig. 7(a). We see here that the contour Ap/p=0 coin-
cides with the contour &,,/€,,=—0.09 in Fig. 6. Above
(below) this contour, Fig. 7(a), the effect of gravity is to
increase (decrease) the density.

For smaller values of y, the normal strain €,, vanishes
along certain contours, see Sec. V above, and so &,;/€,,
possess lines of singularities. The fractional density
change contour graph for vy=0.4 and
@=arctanV'(5/3)=52.2° is shown in Fig. 7(b). The den-
sity change has two maxima, each of value (Ap/p)™*
say, at (£0.32,—0.32). There is a local maximum
(Ap/p)=0.87(Ap/p)™** at (0,—1). Minima occur at
(£0.89,—0.89) with (Ap/p)=—0.33(Ap/p)™* and at
(0,—0.58) with (Ap/p)=—0.041(Ap/p)™®*. The com-
plex behavior seen here is a consequence of the pattern of
zeros in €;; and €,,, Figs. 3(b) and 4(b).

VIII. REACTION R(s)

The reaction R(s) of the supporting line on the sth
particle is determined by the displacement components
[Eq. (23)]. Given the displacement components #; and
#i,, it is then a simple matter to calculate the ratio
R(s)/w. Setting the total weight of the triangle



730 A. H. OPIE AND J. GRINDLAY 31

(@
- (Ap/pYy (Ap/p)™

N,

-0.10

Y =4

O = arctan(10/3)

X2
g

-0.70

Y'
—ot0 | (b)
cen | \ (Aplip)(Aplp)™
i Y =04

© = arctan(/5/3)

- 0.40 |
%
-8 o o, 0,
—rvn
- 0.60
0.

X

0 ~—— ==:=° 0.15
-070 |
F—o0.15 N -02
- o080 | T 3
S — o.15 &
[X]
~090
- 1.00 1 1 I I
0.01 0.21 0.41 0.61 0.81
~
X
1

FIG. 7. Contour plot of the density change (Ap/p) normal-
ized to the maximum magnitude (Ap/p)™* for the two cases (a)
y=4, 6=73.3° and (b) y =0.4, 6=52.2°. The hatched areas are
regions of rarefaction.

N(N +1)w /2=W, we have plotted the ratio R(s)/W in
Fig. 8 for the three values y =40, 4, and 0.4. As we see
from these graphs, the reaction forces vary across the
base of the triangle reaching a maximum under the apex
and this maximum increases with decreasing y.

There is no hint that by varying the spring constant ra-
tio we could cause this maximum to move away from the
point under the apex. This suggests that the solution to
the problem of modeling the experimental results of Smid
and Novosad [7] will not be found by introducing elastic
disks.
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FIG. 8. Graph of the ratio of the normal reaction R [Eq.
(23)], to the total weight W of the triangle vs the normalized
coordinate X, for the three cases ¥ =0.4, 4, and 40, each with
N =100.

IX. SUMMARY

We have carried out a numerical analysis of the equi-
librium state of a triangular pile of particles interconnect-
ed by linear springs and subjected to the force of gravity.
The results (a) show a complex pattern of strain and mass
density behavior and (b) prove that this system ap-
proaches a thermodynamic limit for the case of small
(~ 100 layers) piles.

APPENDIX: MICROSCOPIC STRAIN

The gravity induced deformation of the triangular ar-
ray is described by the set of displacement components,
u;(n,s), i=12, n=1,...,N, and s=1,...,n. To
define the deformation gradient at the microscopic or
atomic level, we proceed as follows. Let a particle initial-
ly at a point x; be moved to a point x; +8x;. The defor-
mation gradient tensor u,; is defined as the set of quanti-
ties that relate the shift &x; to the original position x; in
the form

2
8x; =3 uyx

j=1

i 1=1,2. (A1)

To obtain expressions for the displacement gradients in
the case of the triangular array described above, we
choose to relate the positions and shifts of the (n,s +1)th
and (n —1,s)th particles relative to the (n,s)th particle
(see Fig. 2). Hence,

uyn,s +1)—u,(n,s)=u,,2a cosb , (A2)
uy(n,s +1)—u,(n,s)=u,2a cosb , (A3)
u(n—1,s)—u(n,s)=u;a cos@+u,,asinf , (A4)

u,(n—1,s)—u,(n,s)=u,a cosb+u,,a sind . (AS5)
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Solving for the displacement gradients from these four
equations and substituting the results into the expressions
for the infinitesimal strain tensor, we find that

en=uy=[u,(n,s +1)—u,(n,s)]/2a cosO , (A6)
€=Uy =[2u,(n —1,s)
—u,(n,s)—u,(n,s +1)]/2a sinf , (A7)
€n=(uptuy)/2
={2u;(n—1,s)—u(n,s)—u,(n,s +1)
—tanBlu,(n,s)—u,(n,s +1)]} /4a sinf . (A8)

Strain is normally used to describe the deformation in
continua and so we can think of the expressions (A6),

(A7), and (A8) based on particle displacements, as micro-
scopic strains, in the sense of strains defined at the micro-
scopic level. We shall associate these strains with the
(n,s)th particle. Clearly we can obtain different expres-
sions for the microscopic strains by calculating the defor-
mation gradient from the displacements of other sets of
particles around the (n,s)th particle. However, in ma-
croscopically sized bodies the variation among different
definitions of microscopic strain will be negligible.
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